Гидроксид алюминия, характеристика, свойства и получение, химические реакции

Оглавление

6. Применение

Биодизельное топливо

Получение биодизеля

Треска Lutefisk на праздновании Дня Конституции Норвегии

Немецкий рогалик

Едкий натр
применяется во множестве отраслей промышленности и для бытовых нужд:

Каустик применяется в целлюлозно-бумажной промышленности
для делигнификации (сульфатный процесс) целлюлозы, в производстве бумаги, картона, искусственных волокон, древесно-волоконных плит.
Для омыления жиров при производстве мыла, шампуня и других моющих средств

В древности во время стирки в воду добавляли золу, и, по-видимому, хозяйки обратили внимание, что если зола содержит жир, попавший в очаг во время приготовления пищи, то посуда хорошо моется. О профессии мыловара (сапонариуса) впервые упоминает примерно в 385 г

н. э. Теодор Присцианус. Арабы варили мыло из масел и соды с VII века, сегодня мыла производятся тем же способом, что и 10 веков назад. В настоящее время продукты на основе гидроксида натрия (с добавлением гидроксида калия, нагретые до 50-60 градусов Цельсия, применяются в сфере промышленной мойки для очистки изделий из нержавеющей стали от жира и других маслянных веществ, а также остатков механической обработки.
В химических отраслях промышленности
— для нейтрализации кислот и кислотных окислов, как реагент или катализатор в химических реакциях, в химическом анализе для титрования, для травления алюминия и в производстве чистых металлов, в нефтепереработке
— для производства масел.

Для изготовления биодизельного топлива
— получаемого из растительных масел и используемого для замены обычного дизельного топлива. Для получения биодизеля к девяти массовым единицам растительного масла добавляется одна массовая единица спирта (то есть соблюдается соотношение 9:1), а также щелочной катализатор (NaOH). Полученный эфир (главным образом линолевой кислоты) отличается хорошей воспламеняемостью, обеспечиваемой высоким цетановым числом. Цетановое число условная количественная характеристика самовоспламеняемости дизельных топлив в цилиндре двигателя (аналог октанового числа для бензинов). Если для минерального дизтоплива характерен показатель в 50-52 %, то метиловый эфир уже изначально соответствует 56-58 % цетана. Сырьем для производства биодизеля могут быть различные растительные масла: рапсовое, соевое и другие, кроме тех, в составе которых высокое содержание пальмитиновой кислоты (пальмовое масло). При его производстве в процессе этерификации также образуется глицерин который используется в пищевой, косметической и бумажной промышленности, либо перерабатывается в эпихлоргидрин по методу Solvay.
В качестве агента для растворения засоров канализационных труб
, в виде сухих гранул или в составе гелей. Гидроксид натрия дезагрегирует засор и способствует лёгкому продвижению его далее по трубе.
В гражданской обороне для дегазации и нейтрализации
отравляющих веществ, в том числе зарина, в ребризерах (изолирующих дыхательных аппаратах (ИДА), для очистки выдыхаемого воздуха от углекислого газа.

Гидроксид натрия также используется в сочетании с цинком для фокуса
. Медную монету кипятят в растворе гидроксида натрия в присутствии гранул металлического цинка, через 45 секунд, цвет копейки станет серебристым. После этого копейку вынимают из раствора и нагревают в пламени горелки, где она, практически моментально становится «золотой». Причины этих изменений заключается в следующем: ионы цинка вступают в реакцию с гидроксидом натрия (в недостатке) с образованием Zn (OH) 4 2− — который при нагревании разлагается до металлического цинка и осаждается на поверхность монеты. А при нагревании цинк и медь образуют золотистый сплав — латунь.
Гидроксид натрия также используется для мойки пресс-форм автопокрышек.
Гидроксид натрия также используется для нелегального производства метамфетаминов
и других наркотических средств.

В приготовлении пищи:
для мытья и очистки фруктов и овощей от кожицы, в производстве шоколада и какао, напитков, мороженого, окрашивания карамели, для размягчения маслин и производстве хлебобулочных изделий. Зарегистрирован в качестве пищевой добавки E524
.
Некоторые блюда готовятся с применением каустика:

Лютефиск
— скандинавское блюдо из рыбы — сушёная треска вымачивается 5-6 дней в едкой щёлочи и приобретает мягкую, желеобразную консистенцию.

Брецель
— немецкие рогалики — перед выпечкой их обрабатывают в растворе едкой щёлочи, которая способствует образованию уникальной хрустящей корочки.

В косметологии для удаления ороговевших участков кожи: бородавок, папиллом.

Взаимодействие алюминия со сложными веществами

с водой

Как уже было сказано выше, стойкая и прочная оксидная пленка из Al2O3 не дает алюминию окисляться на воздухе. Эта же защитная оксидная пленка делает алюминий инертным и по отношению к воде. При снятии защитной оксидной пленки с поверхности такими методами, как обработка водными растворами щелочи, хлорида аммония или солей ртути (амальгирование), алюминий начинает энергично реагировать с водой с образованием гидроксида алюминия и газообразного водорода:

с оксидами металлов

После поджигания смеси алюминия с оксидами менее активных металлов (правее алюминия в ряду активности) начинается крайне бурная сильно-экзотермическая реакция. Так, в случае взаимодействия алюминия с оксидом железа (III) развивается температура 2500-3000оС. В результате этой реакции образуется высокочистое расплавленное железо:

2AI + Fe2O3 = 2Fe + Аl2О3

Данный метод получения металлов из их оксидов путем восстановления алюминием называется алюмотермией или алюминотермией.

с кислотами-неокислителями

Взаимодействие алюминия с кислотами-неокислителями, т.е. практически всеми кислотами, кроме концентрированной серной и азотной кислот, приводит к образованию соли алюминия соответствующей кислоты и газообразного водорода:

2Аl + 6Н+ = 2Аl3+ + 3H2;

-концентрированной серной кислотой

Взаимодействие алюминия с концентрированной серной кислотой в обычных условиях, а также низких температурах не происходит вследствие эффекта, называемого пассивацией. При нагревании реакция возможна и приводит к образованию сульфата алюминия, воды и сероводорода, который образуется в результате восстановления серы, входящей в состав серной кислоты:

Такое глубокое восстановление серы со степени окисления +6 (в H2SO4) до степени окисления -2 (в H2S) происходит благодаря очень высокой восстановительной способности алюминия.

— концентрированной азотной кислотой

Концентрированная азотная кислота в обычных условиях также пассивирует алюминий, что делает возможным ее хранение в алюминиевых емкостях. Так же, как и в случае с концентрированной серной, взаимодействие алюминия с концентрированной азотной кислотой становится возможным при сильном нагревании, при этом преимущественно параллельно протекают реакции:

— разбавленной азотной кислотой

Взаимодействие алюминия с разбавленной по сравнению с концентрированной азотной кислотой приводит к продуктам более глубокого восстановления азота. Вместо NO в зависимости от степени разбавления могут образовываться N2O и NH4NO3:

8Al + 30HNO3(оч. разб) = 8Al(NO3)3 + 3NH4NO3 + 9H2O

со щелочами

Алюминий реагирует как с водными растворами щелочей:

так и с чистыми щелочами при сплавлении:

В обоих случаях реакция начинается с растворения защитной пленки оксида алюминия:

Аl2О3 + 2NaOH + 3H2O = 2Na[Al(OH)4]

Аl2О3 + 2NaOH = 2NaAlO2 + Н2О

В случае водного раствора алюминий, очищенный от защитной оксидной пленки, начинает реагировать с водой по уравнению:

Образующийся гидроксид алюминия, будучи амфотерным, реагирует с водным раствором гидроксида натрия с образованием растворимого тетрагидроксоалюмината натрия:

Al(OH)3 + NaOH = Na[Al(OH)4]

Химические свойства

Химические свойства оснований с точки зрения теории электролитической диссоциации обусловлены наличием в их растворах избытка свободных гидроксид – ионов ОН—.

фенолфталеин – малиновый

лакмус – синий

метиловый оранжевый – желтый

Фенолфталеин придаёт раствору щёлочи малиновую окраску

2KOH + H2SO4 → K2SO4 + 2H2O,

растворимое

Mg(OH)2 + 2HCI → MgCI2 + 2H2O.

нерастворимое

2KOH + SO3 → K2SO4 + H2O

а) при плавлении:

2NaOH + AI2O3 → 2NaAIO2 + H2O,

NaOH + AI(OH)3 → NaAIO2 + 2H2O.

б) в растворе:

2NaOH + AI2O3 +3H2O → 2Na[AI(OH)4],

NaOH + AI(OH)3 → Na[AI(OH)4].

2NaOH + Zn + 2H2O → Na2[Zn(OH)4] + H2

2NaOH + Si + H2O → Na 2SiO3 + 2H2

2NaOH + CuSO4 → Cu(OH)2 + Na2SO4,

Ba(OH)2 + K2SO4 → BaSO4 + 2KOH.

Ca(OH)2 → CaO + H2O,

Cu(OH)2  → CuO  + H2O.

Взаимодействие алюминия с простыми веществами

с кислородом

При контакте абсолютно чистого алюминия с воздухом атомы алюминия, находящиеся в поверхностном слое, мгновенно взаимодействуют с кислородом воздуха и образуют тончайшую, толщиной в несколько десятков атомарных слоев, прочную оксидную пленку состава Al2O3, которая защищает алюминий от дальнейшего окисления. Невозможно и окисление крупных образцов алюминия даже при очень высоких температурах. Тем не менее, мелкодисперсный порошок алюминия довольно легко сгорает в пламени горелки:

4Аl + 3О2 = 2Аl2О3

с галогенами

Алюминий очень энергично реагирует со всеми галогенами. Так, реакция между перемешанными порошками алюминия и йода протекает уже при комнатной температуре после добавления капли воды в качестве катализатора. Уравнение взаимодействия йода с алюминием:

2Al + 3I2 =2AlI3

С бромом, представляющим собой тёмно-бурую жидкость, алюминий также реагирует без нагревания. Образец алюминия достаточно просто внести в жидкий бром: тут же начинается бурная реакция с выделением большого количества тепла и света:

2Al + 3Br2 = 2AlBr3

Реакция между алюминием и хлором протекает при внесении нагретой алюминиевой фольги или мелкодисперсного порошка алюминия в заполненную хлором колбу. Алюминий эффектно сгорает в хлоре в соответствии с уравнением:

2Al + 3Cl2 = 2AlCl3

с серой

При нагревании до 150-200 оС или после поджигания смеси порошкообразных алюминия и серы между ними начинается интенсивная экзотермическая реакция с выделением света:

— сульфид алюминия

При взаимодействии алюминия с азотом при температуре около 800 oC образуется нитрид алюминия:

с углеродом

При температуре около 2000oC алюминий взаимодействует с углеродом и образует карбид (метанид) алюминия, содержащий углерод в степени окисления -4, как в метане.

Рынок каустической соды

В России, согласно ГОСТ 2263-79, производятся следующие марки натра едкого:

  • ТР — твёрдый ртутный (чешуированный);
  • ТД — твёрдый диафрагменный (плавленый);
  • РР — раствор ртутный;
  • РХ — раствор химический;
  • РД — раствор диафрагменный.
Наименование показателя ТР ОКП 21 3211 0400 ТД ОКП 21 3212 0200 РР ОКП 21 3211 0100 РХ 1 сорт ОКП 21 3221 0530 РХ 2 сорт ОКП 21 3221 0540 РД Высший сорт ОКП 21 3212 0320 РД Первый сорт ОКП 21 3212 0330
Внешний вид Чешуированная масса белого цвета. Допускается слабая окраска Плавленая масса белого цвета. Допускается слабая окраска Бесцветная прозрачная жидкость Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок
Массовая доля гидроксида натрия, %, не менее 98,5 94,0 42,0 45,5 43,0 46,0 44,0

Гидроксид алюминия: получение и свойства

Способы получения

1. Гидроксид алюминия можно получить действием раствора аммиака на соли алюминия.

Например , хлорид алюминия реагирует с водным раствором аммиака с образованием гидроксида алюминия и хлорида аммония:

2. Пропусканием углекислого газа, сернистого газа или сероводорода через раствор тетрагидроксоалюмината натрия:

Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить сложное вещество Na[Al(OH)4] на составные части: NaOH и Al(OH)3. Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Al(OH)3 не реагирует с СО2, то мы записываем справа Al(OH)3 без изменения.

3. Гидроксид алюминия можно получить действием недостатка щелочи на избыток соли алюминия.

Например , хлорид алюминия реагирует с недостатком гидроксида калия с образованием гидроксида алюминия и хлорида калия:

4. Также гидроксид алюминия образуется при взаимодействии растворимых солей алюминия с растворимыми карбонатами, сульфитами и сульфидами . Сульфиды, карбонаты и сульфиты алюминия необратимо гидролизуются в водном растворе.

Например: бромид алюминия реагирует с карбонатом натрия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется бромид натрия:

Хлорид алюминия реагирует с сульфидом натрия с образованием гидроксида алюминия, сероводорода и хлорида натрия:

Химические свойства

1. Гидроксид алюминия реагирует с растворимыми кислотами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов и типа соли.

Например , гидроксид алюминия взаимодействует с азотной кислотой с образованием нитрата алюминия:

2. Гидроксид алюминия взаимодействует с кислотными оксидами сильных кислот .

Например , гидроксид алюминия взаимодействует с оксидом серы (VI) с образованием сульфата алюминия:

3. Гидроксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли—алюминаты, а в растворе – комплексные соли . При этом гидроксид алюминия проявляет кислотные свойства.

Например , гидроксид алюминия взаимодействует с гидроксидом калия в расплаве с образованием алюмината калия и воды:

Гидроксид алюминия растворяется в избытке щелочи с образованием тетрагидроксоалюмината:

4. Г идроксид алюминия разлагается при нагревании :

Видеоопыт взаимодействия гидроксида алюминия с соляной кислотой и щелочами (амфотерные свойства гидроксида алюминия) можно посмотреть здесь.

Источник

2. Химические свойства

Гидроксид натрия (едкая щёлочь) — сильное химическое основание (к сильным основаниям относят гидроксиды, молекулы которых полностью диссоциируют в воде), к ним относят гидроксиды щелочных и щёлочно-земельных металлов подгрупп Iа и IIа периодической системы Д. И. Менделеева, KOH (едкое кали), Ba(OH) 2 (едкий барит), LiOH, RbOH, CsOH. Щёлочность (основность) определяется валентностью металла, радиусом внешней электронной оболочки и электрохимической активностью: чем больше радиус электронной оболочки (увеличивается с порядковым номером), тем легче металл отдает электроны, и тем выше его электрохимическая активность и тем левее располагается элемент в электрохимическом ряду активности металлов, в котором за ноль принята активность водорода.

Водные растворы NaOH имеют сильную щелочную реакцию (pH 1%-раствора = 13). Основными методами определения щелочей в растворах являются реакции на гидроксид-ион (OH −), (c фенолфталеином — малиновое окрашивание и метиловым оранжевым (метилоранжем) — жёлтое окрашивание). Чем больше гидроксид-ионов находится в растворе, тем сильнее щёлочь и тем интенсивнее окраска индикатора.

Гидроксид натрия вступает в реакции:

1.Нейтрализации
с различными веществами в любых агрегатных состояниях, от растворов и газов до твёрдых веществ:

c кислотами — с образованием солей и воды:

NaOH + HCl → NaCl + H 2 O

(в целом такую реакцию можно представить простым ионным уравнением, реакция протекает с выделением тепла (экзотермическая реакция): OH − + H 3 O + → 2H 2 O.
)

с амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твёрдыми при сплавлении:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O

так и с растворами:

ZnO + 2NaOH (раствор) + H 2 O → Na 2 (раствор) +H 2

(Образующийся анион называется тетрагидроксоцинкат-ионом, а соль, которую можно выделить из раствора — тетрагидроксоцинкатом натрия. В аналогичные реакции гидроксид натрия вступает и c другими амфотерными оксидами.)

(1) H 2 S + 2NaOH = Na 2 S + 2H 2 O (при избытке NaOH)

(2) H 2 S + NaOH = NaHS + H 2 O (кислая соль, при отношении 1:1)

2. Обмена с солями в растворе
:

2NaOH +CuSO 4 → Cu (OH) 2 ↓ + Na 2 SO 4 ,

2Na + + 2OH − + Cu 2+ + SO 4 2− → Cu(OH) 2 ↓+ Na 2 SO 4

Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия, действуя гидроксидом натрия на сульфат алюминия в водном растворе. Его и используют, в частности, для очистки воды от мелких взвесей.

6NaOH + Al 2 (SO 4) 3 → 2Al(OH) 3 ↓ + 3Na 2 SO 4 .

6Na + + 6OH − + 2Al 3+ + SO 4 2− → 2Al(OH) 3 ↓ + 3Na 2 SO 4 .

3. С неметаллами
:

например, с фосфором — с образованием гипофосфита натрия:

4Р + 3NaOH + 3Н 2 О → РН 3 + 3NaH 2 РО 2 .

3S + 6NaOH → 2Na 2 S + Na 2 SO 3 + 3H 2 O

с галогенами:

2NaOH + Cl 2 → NaClO + NaCl + H 2 O
(дисмутация хлора)

2Na + + 2OH − + 2Cl − → 2Na + + 2O 2− + 2H + + 2Cl − → NaClO + NaCl + H 2 O

6NaOH + 3I 2 → NaIO 3 + 5NaI + 3H 2 O

4. С металлами
: Гидроксид натрия вступает в реакцию с алюминием, цинком, титаном. Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал). Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса — тетрагидроксиалюмината натрия и водорода:

2Al 0 + 2NaOH + 6H 2 O → 3H 2 + 2Na

2Al 0 + 2Na + + 8OH − + 6H + → 3H 2 + 2Na + −

5. С эфирами
, амидами и алкилгалогенидами (гидролиз):

Гидролиз эфиров

с жирами (омыление), такая реакция необратима, так как получающаяся кислота со щёлочью образует мыло и глицерин. Глицерин впоследствии извлекается из подмыльных щёлоков путём вакуум-выпарки и дополнительной дистилляционной очистки полученных продуктов. Этот способ получения мыла был известен на Ближнем Востоке с VII века:

(C 17 H 35 COO) 3 C 3 H 5 + 3NaOH → C 3 H 5 (OH) 3 + 3C 17 H 35 COONa

В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла, в зависимости от состава жира.

6. С многоатомными спиртами
— с образованием алкоголятов:

HO-CH 2 -CH 2 ОН + 2NaOH → NaO-CH 2 -CH 2 -ONa + 2Н 2 O

7. Со стеклом
: в результате длительного воздействия горячей гидроокиси натрия поверхность стекла становится матовой (выщелачивание силикатов):

SiO 2 + 4NaOH → (2Na 2 O)·SiO 2 + 2H 2 O.

Производство каустической соды

Получение каустической соды основано на процессе электролиза хлористого натрия. При этом в результате реакции выделяются хлор и водород. Создать каустическую соду можно тремя методами:

  • амальгамный (ртутный) метод
  • диафрагменный метод
  • мембранный метод

Амальгамный метод базируется на процессе электролиза, в котором используется ртутный катод. Главным достоинством метода является получение довольно чистого каустика, в котором нет хлора. Диафрагменным методом можно получить каустик, в котором содержится много хлора. Однако, стоимость изготовления существенно ниже. Этот способ базируется на процессе разделения катода и анода пористой диафрагмой. Мембранный метод называют самым перспективным. Метод основан на процессе разделения катода и анода мембраной, пропускающей исключительно ионы натрия. Главным достоинством можно назвать существенную простоту метода, в сравнении с диафрагменным методом. Кроме этого, данный метод наименее энергозатратет. Тратится на 25% меньше энергии, чем при ртутном методе и на 15% меньше, чем при диафрагменном. Этот способ является самым экологичным из всех перечисленных. На территории России каустическую соду выпускают на 10 заводах. Главным образом используют ртутный и диафрагменный способы. Мембранной технологией может похвастаться лишь одно предприятие.

Кислотные окиси

Кислотный высший оксид – это солеобразующий оксид, который соответствует кислоте. Например, у оксида серы шестивалентного (SO3) есть соответствующее ему химическое соединения – H2SO4. Эти элементы вступают в реакцию с оксидами основных и амфотерных свойств, основаниями и водой. Образуется соль или кислота.

  1. Со щелочными оксидами: CO2 (углекислый газ) + MgO (окись магния) = MgCO3 (горькая соль).
  2. С амфотерными окисями: P2О5 (окисел фосфора)+ Al2О3 (окисел алюминия) = 2AlPO4 (фосфат или ортофосфат алюминия).
  3. С основаниями (щелочами): CO2 (углекислый газ) + 2NaOH (едкий натр) = Na2CO3 (карбонат натрия или кальцинированная сода) + H2O (вода).
  4. С водой: CO2 (углекислый газ) + H2O = H2CO3 (угольная кислота, после реакции мгновенно распадается на углекислый газ и воду).

Оксиды кислот не вступают в реакцию друг с другом.

Гидроксид алюминия — вещество с интересными свойствами

Гидроксид алюминия — неорганическое вещество, щелочь алюминия, формула Al(OH)3. Встречается в природе, входит в состав бокситов.

Свойства

Существует в четырех кристаллических модификациях и в виде коллоидного раствора, гелеобразного вещества. Реактив почти не водорастворим. Не горит, не взрывается, не ядовит.

В твердом виде — мелкокристаллический рыхлый порошок, белый или прозрачный, иногда с легким серым или розовым оттенком. Гелеобразный гидроксид тоже белый.

Химические свойства у твердой и гелеобразной модификации отличаются. Твердое вещество достаточно инертно, не вступает в реакции с кислотами, щелочами, другими элементами, но может образовывать метаалюминаты в результате сплавления с твердыми щелочами или карбонатами.

Гелеобразное вещество проявляет амфотерные свойства, то есть реагирует и с кислотами, и со щелочами. В реакции с кислотами образуются соли алюминия соответствующей кислоты, со щелочами — соли другого типа, алюминаты. Не вступает в реакции с раствором аммиака.

При нагревании гидроксид разлагается на оксид и воду.

Меры предосторожности

Реактив относится к четвертому классу опасности, считается пожаробезопасным и практически безопасным для человека и окружающей среды

Осторожность нужно проявлять только с аэрозольными частицами в воздухе: пыль оказывает раздражающее воздействие на органы дыхания, кожу, слизистые оболочки

Поэтому на рабочих местах, где возможно образование большого количества пыли гидроксида алюминия, сотрудники должны использовать средства защиты для органов дыхания, глаз и кожи. Следует наладить контроль содержания в воздухе рабочей зоны вредных веществ по методике, утвержденной ГОСТом.

Помещение должно быть оборудовано приточно-вытяжной вентиляцией, а при необходимости — местными аспирационными отсосами.

Хранят твердую гидроокись алюминия в многослойных бумажных мешках или другой таре для сыпучих продуктов.

Применение

— В промышленности реактив используется для получения чистого алюминия и производных алюминия, например, оксида алюминия, сернокислого и фтористого алюминия. — Оксид алюминия, получаемый из гидроксида, применяется для получения искусственных рубинов для нужд лазерной техники, корундов — для сушки воздуха, очистки минеральных масел, для производства наждака.— В медицине используется как обволакивающее средство и антацид длительного действия для нормализации кислотно-щелочного баланса ЖКТ человека, для лечения язвенной болезни желудка и двенадцатиперстной кишки, гастро-эзофагеального рефлюкса и некоторых других заболеваний.— В фармакологии входит в состав вакцин для усиления иммунной реакции организма на воздействие введенной инфекции.— В водоочистке — как адсорбент, помогающий удалять из воды различные загрязнения. Гидроксид активно вступает в реакции с веществами, которые нужно удалить, образуя нерастворимые соединения.— В химпроме используется как экологичный антипирен для полимеров, силиконов, каучуков, лакокрасочных материалов — чтобы ухудшить их горючесть, способность к возгоранию, подавить выделение дыма и токсичных газов.

— В производстве зубной пасты, минеральных удобрений, бумаги, красителей, криолита.

Химические свойства амфотерных гидроксидов цинка и алюминия

Реакции гидроксидов цинка и алюминия с оксидом натрия происходят при сплавлении, потому что эти гидроксиды твердые и не входят в состав растворов.

Zn(OН)2 + Na2O → Na2ZnO2 + Н2О     соль называется цинкат натрия.

2Al(OН)3 + Na2O → 2NaAlO2 + 3Н2О   соль называется метаалюминат натрия.

Рис. 3. Гидроксид алюминия

Реакции амфотерных оснований со щелочами характеризует их кислотные свойства. Данные реакции можно проводить как при сплавлении твердых веществ, так и в растворах. Но при этом получатся разные вещества, т.е. продукты реакции зависят от условий проведения реакции: в расплаве или в растворе.

Zn(OH)2 + 2NaOH тв. Na2ZnO2 + 2Н2О

Al(OH)3 + NaOH тв. NaAlO2+ 2H2O

Zn(OH)2 + 2NaOH раствор → Na2[Zn(OH)4] Al(OH)3 + NaOH раствор → Na[Al(OH)4] тетрагидроксоалюминат натрия Al(OH)3 + 3NaOH раствор→ Na3[Al(OH)6]        гексагидроксоалюминат натрия.

Получается тетрагидроксоалюминат натрия или гексагидроксоалюминат натрия зависит от того, сколько щелочи мы взяли. В последней реакции щелочи взято много и образуется гексагидроксоалюминат натрия.

Разница между гидроксидом натрия и гидроксидом алюминия

Определение

Едкий натр: Гидроксид натрия представляет собой гидроксид металла, имеющий химическую формулу NaOH.

Гидроксид алюминия: Гидроксид алюминия представляет собой амфотерный гидроксид, имеющий химическую формулу Al (OH)3.

Гидроксид-анионы

Едкий натр: На один катион натрия в гидроксиде натрия приходится один анион гидроксида.

Гидроксид алюминия: В одном катионе алюминия имеется три аниона гидроксида в гидроксиде алюминия.

Природа

Едкий натр: Гидроксид натрия является основным соединением.

Гидроксид алюминия: Гидроксид алюминия является амфотерным соединением.

Молярная масса

Едкий натр: Молярная масса гидроксида натрия составляет 39,99 г / моль.

Гидроксид алюминия: Молярная масса гидроксида алюминия составляет 78 г / моль.

Температура плавления

Едкий натр: Температура плавления гидроксида натрия составляет 318 ° С.

Гидроксид алюминия: Температура плавления гидроксида алюминия составляет 300 ° С.

Реакция с кислотами

Едкий натр: Гидроксид натрия реагирует с кислотами, образуя натриевую соль.

Гидроксид алюминия: Когда гидроксид алюминия реагирует с кислотой, он действует как основание Бренстеда-Лоури и принимает протоны.

Реакция с основами

Едкий натр: Гидроксид натрия не вступает в реакцию с основаниями.

Гидроксид алюминия: При взаимодействии с основаниями он действует как кислота Льюиса, принимая электронную пару от гидроксильного аниона.

Заключение

И гидроксид натрия, и гидроксид алюминия являются ионными соединениями, состоящими из катионов металлов и гидроксид-анионов. Основное различие между гидроксидом натрия и гидроксидом алюминия состоит в том, что гидроксид натрия является основным соединением, тогда как гидроксид алюминия является амфотерным соединением.

Ссылка:

1. «ГИДРОКСИД НАТРИЯ». Национальный центр биотехнологической информации. База данных PubChem Compound, Национальная медицинская библиотека США,

Амфотерные окиси

Амфотерный высший оксид – это окисел амфотерного металла. В зависимости от условий, он может проявить основные или кислотные свойства. Например, формулы высших оксидов, которые проявляют амфотерные свойства: ZnO (окисел цинка), Al2O3 (глинозем). Реагируют амфотерные окиси со щелочами, кислотами (так же за исключением кремниевой кислоты), основными и кислотными оксидами.

  1. С основаниями: ZnO (окисел цинка) + 2NaOH (основание натрия) = Na2ZnO2 (двойная соль цинка и натрия)+ H2O.
  2. С кислотами: Al2O3 (алюминия оксид) + 6HCl (соляная кислота) = 2AlCl3 (хлорид алюминия или хлористый алюминий) + 3H2O.
  3. С кислотными оксидами: Al2O3 (окисел алюминия) + 3SO3 (окисел серы шестивалентный) = Al2(SO4)3 (алюминиевые квасцы).
  4. С окислами основного характера: Al2O3 (окисел алюминия) + Na2O (окись натрия) = 2NaAlO2 (алюминат натрия).

Элементы высших оксидов амфотерного характера не взаимодействуют между собой и с водой.

Источник

Состав

Корунд из Бразилии , размером примерно 2 × 3 см.

Наиболее распространенная форма кристаллического оксида алюминия известна как корунд , который является термодинамически стабильной формой. Ионы кислорода образуют почти гексагональную плотноупакованную структуру, в которой ионы алюминия заполняют две трети октаэдрических промежутков. Каждый центр Al 3+ является восьмигранным . С точкой зрения кристаллографии , корунд принимает тригональную решетку Бравы с пространственной группой из R 3 C (номер 167 в Международных таблицах). Примитивная ячейка содержит две формульные единицы оксида алюминия.

Оксид алюминия также существует в других метастабильных фазах, включая кубические γ- и η-фазы, моноклинную θ-фазу, гексагональную χ-фазу, орторомбическую κ-фазу и δ-фазу, которая может быть тетрагональной или орторомбической. Каждый из них имеет уникальную кристаллическую структуру и свойства. Кубический γ-Al 2 O 3 имеет важные технические приложения. Так называемый β-Al 2 O 3 оказался NaAl 11 O 17 .

Расплавленный оксид алюминия около температуры плавления составляет примерно 2/3 тетраэдрических (т. Е. 2/3 Al окружены 4 кислородными соседями) и 1/3 5-координирован с очень небольшим (<5%) октаэдрическим Al-O. . Около 80% атомов кислорода являются общими для трех или более полиэдров Al-O, и большинство межполиэдрических связей имеют общие углы, а остальные 10–20% имеют общие ребра. Разрушение октаэдров при плавлении сопровождается относительно большим увеличением объема (~ 33%), плотность жидкости вблизи точки плавления составляет 2,93 г / см 3 . Структура расплавленного оксида алюминия зависит от температуры, и доля алюминия в 5- и 6-кратном размере увеличивается во время охлаждения (и переохлаждения) за счет тетраэдрических единиц AlO 4 , приближаясь к локальным структурным структурам, обнаруженным в аморфном оксиде алюминия.

Физические свойства гидроксида алюминия:

Наименование параметра: Значение:
Химическая формула Al(OH)3
Синонимы и названия иностранном языке для гидроксида алюминия α-формы potassium hydroxide (англ.)

aluminum hydroxide α-form (англ.)

байерит (рус.)

Синонимы и названия иностранном языке для гидроксида алюминия γ-формы potassium hydroxide (англ.)

aluminium hydroxide (англ.)

aluminum hydroxide (англ.)

hydrargillite (англ.)

гиббсит (рус.)

гидраргиллит (рус.)

Тип вещества неорганическое
Внешний вид гидроксида алюминия α-формы бесцветные моноклинные кристаллы
Внешний вид гидроксида алюминия γ-формы белый моноклинные кристаллы
Цвет белый, бесцветный
Вкус —*
Запах
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое вещество
Плотность гидроксида алюминия γ-формы (состояние вещества – твердое вещество, при 20 °C), кг/м3 2420
Плотность гидроксида алюминия γ-формы (состояние вещества – твердое вещество, при 20 °C), г/см3 2,42
Температура разложения гидроксида алюминия α-формы, °C 150
Температура разложения гидроксида алюминия γ-формы, °C 180
Молярная масса, г/моль 78,004

* Примечание:

— нет данных.